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Abstract— In this paper, the relation between B-splines and
FIR (Finite Impulse Response) filters is demonstrated and
exploited to design a digital filter for trajectory planning, com-
bining the very simple structure and computational efficiency
of FIR filters with the flexibility of splines. In particular, the
trajectory generator consists of two main elements. The former
is devoted to the solution of an optimization problem that, given
a set of points to be interpolated (or approximated), provides
the control points defining the spline. The latter, a cascade
of moving average filters, gives the trajectory profile at each
sampling time on the basis of such points. The proposed method
has been applied to several robotic and industrial applications,
and in this paper two case studies are reported as examples: an
industrial robot performing a welding operation and a mobile
robot moving in an environment with obstacles. With respect
to these tasks, the main features of the trajectory generatorare
shown: the possibility of planning trajectories with high degree
of smoothness (continuity of the derivatives), the possibility of
easily changing the duration of the trajectory (and therefore the
velocity, acceleration, jerk, etc. of the trajectory) maintaining
the same geometric path, the possibility of locally modifying
the pre-planned path.

I. I NTRODUCTION

Among many other applications, spline functions are ex-
tensively used in planning trajectories for robots becauseof
their flexibility. As a matter of fact, the tasks demanded to
robots (mobile robots, industrial robots, humanoid robots,
etc.) often require position profiles with complex shapes
which are usually defined by means of a number of via-
points. These via-points are then interpolated or approxi-
mated with smooth functions to by optimized in order to
comply with the constraints imposed by the specific robot
application, i.e. kinematic constraints (such as limit values
of velocity, acceleration, jerk, etc.) or dynamic constraints on
the maximum torque available. In general, such interpolation
tasks are performed by means of cubic splines since they
assure the continuity of velocity and acceleration and prevent
large oscillations of the trajectory that can result with high
order polynomials, [1]. Therefore, cubic splines have been
used to minimize the total traveling time of robot trajectories
subject to constraints of velocity acceleration and jerk [2],
or to globally minimize some quantities, such as acceleration
[3] or jerk [4]. Some authors prefer the adoption of splines
in the so-called B-form, i.e. B-splines, because they are
much simpler from the computational point of view [5],
[6] and because a local modification can be made quickly
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and easily without recomputing the entire trajectory [7].
Also in this case cubic B-splines are in general considered.
Splines of order higher than three, able to guarantee the
continuity of jerk and higher derivatives, have been proposed
but they are based on the classical polynomial formulation
[8]. Indeed, B-spline are very suitable to generate trajectories
with continuous derivatives up to a generic ordern, since
the interpolation/approximation of a given set of points does
not depends on the particular order of the B-spline [1]. On
the other hand, despite the clear geometrical meaning of B-
splines and their computational superiority with respect to the
other (equivalent) spline formulations, their use in robotics
is still limited (e.g. in robotics textbooks only polynomial
splines are general considered, see [9], [10], [11] among
many others) probably because their evaluation is based on a
recursive procedure rather than on a closed form expression.
Aim of this paper is to provide a more simple formulation
of B-spline based trajectories, combining the advantages of
these functions with the simplicity and the low computational
complexity of FIR (Finite Impulse Response) filters.

II. B- SPLINES ANDB-SPLINES BASIS FUNCTIONS

Since the basic theory of B-splines is well known, we only
give a brief summary of the concepts and notations. More
details can be found e.g. in [1], [12], [13].
A B-spline of degree p is a parametric curves :
[tmin, tmax] → R

d defined as linear combination ofB-spline
basis functions of degreep, Bp

j (t):

s(t) =

n∑

j=0

pjB
p
j (t), tmin ≤ t ≤ tmax. (1)

The vectorial coefficientspj , j = 0, . . . , m, called control
points, determine the shape of the curve and are computed by
imposing approximation/interpolation conditions on a given
set of data points. Lett = {t0, . . . , tm−1} be a vector of
real numbers (calledknots), with tj ≤ tj+1. The j-th B-
spline basis function of degreep is defined, in a recursive
manner, as

Bp
j (t) =

t − tj
tj+p − tj

Bp−1
j (t) +

tj+p+1 − t

tj+p+1 − tj+1
Bp−1

j+1 (t) (2)

with

B0
j (t) =

{
1, if tj ≤ t < tj+1

0, otherwise.

A particular case of B-splines is represented byuniform
B-splines, that are defined for an equally-spaced distribution
of the knots, i.e.tj+1 − tj = T, j = 0, . . . m − 2. In this



case, the basis functions for a given degreep are consistent
under shifts:

Bp
j+1(t) = Bp

j (t − T ), j = 0, . . . ,m − 2.

Therefore, for uniform B-splines it is possible to express the
(j+1)-th basis functionBp

j in terms of the first basis function
Bp

0 , hereafter simply denoted byBp:

Bp
j (t) = Bp(t − jT ), j = 0, . . . ,m − 1

and the B-spline can be rewritten as

su(t) =
n∑

j=0

pjB
p(t − jT ), 0 ≤ t ≤ (m − 1)T. (3)

Moreover, for uniform B-splines, the definition (2) of the
basis functionBp(t) of degreep is equivalent to

Bp(t) =
1

T
Bp−1 ∗ B0

=
1

T
B0 ∗

1

T
B0 ∗ . . . ∗

1

T
B0

︸ ︷︷ ︸

p times

∗B0, (4)

where∗ denotes the convolution product and

B0(t) =

{
1, if 0 ≤ t < T

0, otherwise.

By Laplace transforming the general expression of the uni-
form B-spline (3) and substituting (4) one obtains

Su(s) =

n∑

j=0

L

{

pjB
0 ∗

1

T
B0 ∗

1

T
B0 ∗ . . . ∗

1

T
B0

}

e−jsT .

Exploiting the linearity of the above expression and the fact
that 1

T
B0 is not a function of the indexj, the B-spline
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Fig. 1. B-spline basis functionsBp(t) obtained for different values of the
degreep.

expression becomes

Su(s) =
n∑

j=0

L
{
pjB

0
}

e−jsT · M(s) · M(s) · . . . · M(s)

=L







n∑

j=0

pjB
0(t − jT )






·M(s)·M(s) ·. . .·M(s).

whereM(s) = L
{

1
T

B0(t)
}

= 1
T

1−e−sT

s
performs the mean

of the input function over an interval of durationT . This
expression suggests that a uniform B-spline can be evaluated
by feeding the cascade ofp filters M(s) with a piecewise
constant function

p(t) =

n∑

j=0

pjB
0(t − jT )

that in the generic intervaljT ≤ t < (j + 1)T assumes the
constant valuepj . Note that, in multidimensional B-splines,
the control pointspj are multi-dimensional and the function
p(t) is multidimensional as well. In this case, it is necessary
to consider the different components and filter each of them
with a separate chain of mean filters.

III. D ISCRETEB-SPLINES

A unified transformation to convert analytic B-splines
in the discrete domain does not exist. In particular, with
reference to cardinal B-splines (uniform B-splines defined
over the integers) which are mainly used for signal analysis,
interpolation and image processing, it is possible to find
in the literature different techniques to obtains discreteB-
splines. In general, they are defined by directly sampling
analytic B-splines with Z-transform, bilinear transform,etc.
[14], [15], [16], [17], [18]. For this purpose, the first step
consists in discretizing the basis functions. By exploiting the
relationship

Bp(t) =
1

T
Bp−1(t) ∗ B0(t)

=
1

T

∫
∞

−∞

Bp−1(t − τ) B0(τ)dτ

the value of the B-spline basis function at the discrete time
instantst = kTs (whereTs is the sampling time) results

Bp
k =

1

T

∫
∞

−∞

Bp−1(kTs − τ) B0(τ)dτ

≈
1

T

n=∞∑

n=−∞

Bp−1(kTs − nTs) B0(nTs)Ts

=
1

N

n=∞∑

n=−∞

Bp−1
k−n B0

n =
1

N
Bp−1

k ∗ B0
k

whereBp
k = Bp(kTs), N = T/Ts is the number of samples

in each knot span, and∗ is the discrete convolution product.
Finally, the discrete basis functionBp

k of degreep, can be
written as

Bp
k =

1

N
B0

k ∗
1

N
B0

k ∗ . . . ∗
1

N
B0

k

︸ ︷︷ ︸

p times

∗B0
k (5)
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Fig. 2. System composed byp filters for the computation of the discrete
B-spline basis functionBp

k
of degreep.

with

B0
k =

{
1, if 0 ≤ k < N − 1

0, otherwise.

Note that (5) is only an approximation of the analytic B-
spline basis function and does not have the same values at
discrete points. Nevertheless, it is possible to prove thatthe
staircase curve obtained in this way tend to the B-spline basis
function in the sense of root mean square (RMS) asTs goes
to zero [17]. The performed approximation leads to a very
simple definition of discrete basis functions and discrete B-
splines. As a matter of fact, the discrete function (5) can be
seen as a cascade ofp mean filters (moving average filters),
whose transfer functions are

M(z) =
1

N

1 − z−N

1 − z−1
(6)

=
1

N

(

1 + z−1 + z−2 + . . . + z−(N−1)
)

with the inputB0
k, see Fig. 2. Like analytic splines, discrete

uniform B-splines are defined as a linear combination of the
discrete basis function properly time-shifted:

sk =

n∑

j=0

pjB
p
k−jN (7)

By applying the Z-transform to (7) one obtains

S(z)=

n∑

j=0

Z

{

pj

1

N
B

0
k ∗

1

N
B

0
k ∗ . . . ∗

1

N
B

0
k ∗ B

0
k

}

z
−jN (8)
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Fig. 3. Samples of the piecewise constant functionpk (a) generating the
spline profilesk that interpolates the given pointsqj (b).

and then, because of the linearity of (8) and the fact that
1
N

B0 is not a function of the indexj,

S(z) =
n∑

j=0

Z
{
pjB

0
k

}
z−jN · M(z) · M(z) · . . . · M(z)

= Z







n∑

j=0

pjB
0
k−jN






· M(z) · M(z) · . . . · M(z).

Therefore, the discrete uniform B-spline of degreep is
defined as the output of a chain ofp mean filters feeded
with the piecewise constant function

pk =

n∑

j=0

pjB
0
k−jN (9)

shown in Fig. 3(a).

IV. CHOICE OF THECONTROL POINTS

The proposed trajectory planner, composed by a generator
of sequences of constant valuespj and by a cascade ofp
mean filters, enjoys the same properties of analytic uniform
B-splines. Therefore, in order to find the control points
which define the piecewise constant functionpk, one can
exploit classical techniques derived by B-spline interpola-
tion/approximation methods.
For example, if one considers the interpolation of a set ofl+1
points{q0, q1, q2, . . . , ql−1, ql} it is necessary to impose the
conditions

s(ti) = qi, i = 0, . . . , l (10)

whereti is the time instant at which the splines(t) crosses
the given pointqi.
The first step consists in selecting the degreep of the
spline according to the desired degree of smoothness. Strictly
related top is the choice of time instantsti:

• if p is odd, theti are assumed coincident with the knots,
ti = iT ;

• if p is even, the time instantsti should be selected in
the midpoint of each knot span,ti = 2i+1

2 T .

Once the interpolation time instantsti have been chosen it is
possible to make the system of equations (10) explicit with
the substitution of the values of basis functions atti in the
spline definition (1). For uniform B-splines it is possible to
find a closed form expression which provides the value of
the basis functionBp at a generic time instantt [16]:

Bp(t) =
1

p!

p+1
∑

k=0

(−1)k

(
p + 1

k

)(
t

T
− k

)p

+

where ! denote the factorial function,
(
a
b

)
= a!

b!(a−b)! and
(x)p

+ is the truncated power function ((x)p
+ = xp if x ≥ 0,

(x)p
+ = 0 otherwise). The values ofBp for p odd andp even,

computed at pointsti = iT andti = 2i+1
2 T respectively, are

reported in Tab. I. Note that, because of the choice of the
interpolation time instants, the values ofBp do not depend
on T , but only on the indexi and on the degreep.
In order to obtain a system of equations well conditioned



from a mathematical point of view it is necessary to consider
symmetrical B-splinesss(t), i.e. uniform B-splines whose
basis functionβp(t) is symmetric with respect the origin.
The functionβp(t) can be deduced fromBp(t) with a simple
time shift, βp(t) = Bp

(
t + p+1

2 T
)
, and as a consequence

symmetrical B-splines are related to standard uniform B-
splines by

ss(t) =

n∑

j=0

pjβ
p(t − jT )

=

n∑

j=0

pjB
p(t + p+1

2 T − jT ) = su(t + p+1
2 T ),

that is, given the control points, uniform B-splines are equal
to symmetrical B-splines delayed byp+1

2 T . Obviously, the
theory of Sec. II and Sec. III could be based on symmetrical
B-splines but this would imply the presence of a temporal
anticipation leading to noncausal filters for the evaluation of
B-splines.
For each point to be interpolated, with the only exception of
the first and last points, the equation (10) becomes

ss(ti) =

n∑

j=0

pjB
p(ti − jT + p+1

2 T ) = qi (11)

where the unknowns are the control pointpj . The interpo-
lation of the first and last points, with zero velocity and
acceleration, is achieved by exploiting the characteristics of
the dynamic system of Fig. 2 used to generate the spline.
Since all the filters have unitary static gain, the output of the
filters cascade will reach and maintain the desired valueq0

or ql iff the same value is applied to the inputpT seconds
before. In other words, in order to smoothly start fromq0

and end toql, the first/lastp control points must be equal to
q0/ql. The l − 1 internal control points are then computed
by solving the system of equations obtained by stacking (11)

0 T 2T 3T 4T 5T 6T 7T 8T

p = 1 0 1 0

p = 3 0 1

6

4

6

1

6
0

p = 5 0 1

120

26

120

66

120

26

120

1

120
0

p = 7 0 1

5040

120

5040

1191

5040

2416

5040

1191

5040

120

5040

1

5040
0

(a)

1

2
T 1

2
T 3

2
T 5

2
T 7

2
T 9

2
T 11

2
T

p = 2 1

8

6

8

1

8
0

p = 4 1

384

76

384

230

384

76

384

1

384
0

p = 6 1

46080

722

46080

10543

46080

23548

46080

10543

46080

722

46080

1

46080

(b)

TABLE I

B-SPLINE BASIS FUNCTIONBp(t) FOR p ODD AT POINTSti = iT (a),

AND FOR p EVEN AT POINTSti = 2i+1

2
T (b).

for i = 1, . . . , l − 1 and the piecewise constant function (9)
can be finally built.

A. Cubic B-splines
The adoption of the B-splines of degreep = 3, i.e.

cubic B-splines, guarantees the continuity of velocity and
acceleration. By substituting the values of Tab. I, the general
equation (11) becomes

ss(iT ) =
1

6
pi−1 +

4

6
pi +

1

6
pi+1 = qi, i = 1, . . . , l − 1 (12)

with the additional constraintsp0 = q0 and pl = ql.
After simple algebraic manipulations, (12) can be written
in a matrix form as












4 1 0 · · · 0
1 4 1 0 · · · 0
0 1 4 1 0 · · · 0
...

. . .
...

0 · · · 0 1 4 1 0
0 · · · 0 1 4 1
0 · · · 0 1 4

























p1

p2

p3

...
pl−3

pl−2

pl−1













=













6q1 − q0

6q2

6q3

...
6ql−3

6ql−2

6ql−1 − ql













(13)

Due to the tridiagonal structure of the system matrix, the
solution of (13) can be easily found. More generally, by
adopting B-splines of generic degreep, the systems to be
solved for obtaining the control points will be characterized
by banded matrices, whose inversion can be carried out in a
very efficient way.
Figure 4 shows the cubic B-spline trajectory obtained by
interpolating the points

{qj} = {5, 12, 3, 45, 23, 4,−3, 5,−3, 10, 10, 16, 19, 4, 23}

with period T = 1s. For the sake of simplicity a one-
dimensional case has been taken into account but the same
considerations are valid in the multi-dimensional case as
shown in the later Sec. VI. Note that the first and the last
tracts are of length2T (and in the case of B-splines of
generic degreep of length p+1

2 T ). This is unavoidable but, on
the other hand it allows the trajectory to smoothly start/end,
i.e. with all the derivatives up to the orderp−1 that are null
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Fig. 4. One-dimensional cubic B-splinesk interpolating a set of given
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pk), velocity and acceleration.
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at the start- and end- points. In the case of the cubic B-spline
this means that initial and final velocities and accelerations
are zero. By comparing the profiles of the functionpk and
of the splinesk it is clear that the latter roughly reproduces
the shape of the former with a “delay” ofp+1

2 T seconds, see
Fig. 4. Moreover, when the last control point is applied, the
output of the trajectory planner reaches such a value after
pT seconds.

V. STRUCTURE OF THEFILTER FOR TRAJECTORY

PLANNING

In Fig. 5 the structure of the trajectory generator is
illustrated. It is composed by two main elements:

1) an algorithm (described previously) that transforms the
desired pointsqj in the set of control pointspj ;

2) a cascade ofp moving average filters, wherep is the
desired degree of the B-spline (the resulting trajectory
will be Cp−1).

Between them, the “Sequencer” produces the piecewise
constant functionpk shown in Fig. 3(a) arranging in a line
the control pointspj , each one for a duration ofT seconds,
where T is the time distance between consecutive points.
While the algorithm for the control points computation is
performed offline, the system composed by the sequencer
and by the filters runs on-line with a sampling timeTs, that
in general is the same of the digital controller of the overall
robotic system. SinceTs is fixed, the numberN of samples
considered in each FIR filter only depends onT , being
N = round( T

Ts

). Therefore, by changingN it is possible to
directly modify T .
In order to smoothly starts from the first desired pointq0

it is necessary that internal states of all the FIR filters are
set to q0, while a smooth end atql is guaranteed by the
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Fig. 6. Welding of two cylindrical objects (a) and related geometric path
(b).

application to the filters cascade input of the control point
ql for at leastp intervals of durationT .
In robotic applications, the pointsqj are generally defined
in a d-dimensional space (d = 2, 3). In this case, the
trajectory generator must be simply replicatedd times, one
for each component, and the desired B-spline is obtained if
the related sequences are synchronized.

VI. N UMERICAL EXAMPLES

Two case studies are now reported as examples of the flex-
ibility and simplicity offered by this technique for trajectory
planning.

A. 3D welding

Consider the case of an industrial robot manipulator weld-
ing the two cylinders in Fig. 6(a). The path that the robot
tool must track is reported in Fig. 6(b). Many CAD/CAM
systems directly provide the control pointspj of the B-spline
to be followed. Differently, it is possible to “sample” the
analytic curve if given or, more generally, consider a certain
number of points distributed along the geometric path to be
followed. In the case of uniform B-splines, the distribution
of the path points is crucial for imposing a desired feed-
rate of the tool. As a matter of fact, it is not possible to
freely chose the duration of each spline segment (beingT
equal for all the tracts), but on the contrary it is necessary
to select the distance between pointsqj with the purpose of
“shaping” the velocity, the acceleration, etc. of the trajectory.
For instance, in a welding application the velocity should be
constant along the entire path. For this reason, pointsqj have
been selected at a distance which is approximatively constant
(the mean value of the distance between consecutive points
is δ = 0.0944). From these via-points the control pointspj

have been obtained as reported in Sec. IV. In order to prevent
oscillation and reduce tracking errors a quintic B-spline has
been considered (p = 5). In this way, velocity, acceleration,
jerk and even snap (i.e. the derivative of jerk) are continuous,
as shown in Fig. 7. The trajectory is evaluated on-line by a
chain of five FIR filters with a sampling timeTs = 0.001s.
Each filter calculates the average of the lastN = 1000
samples, therefore the time distance between the pointsqj is
T = NTs = 1s. As a consequence the speed, which is almost
constant, is|ṡk| ≈

δ
T

= 0.094, see Fig. 7(a). By changing
N it is possible to modify the duration of each tract and
of the overall trajectory. Accordingly the derivatives ofsk
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(velocity, acceleration, jerk, etc.) are modified as follows

s
′(i)
k = αi

s
(i)
k

where α = N
N ′

, being N ′ the new number of samples
considered in each FIR filter. In Fig. 7(b) the velocity,
acceleration and jerk of the B-spline computed withN =
200 (thusT = 0.2s) is shown. Note that the velocity is scaled
by 5 times, the acceleration by 25, the jerk by 125, while the
shape of these profiles remains unchanged. Obviously also
the geometric path defined by the trajectory generator does
not change.

B. Mobile robots

Another interesting application of the proposed planner
concerns the navigation of mobile robots in an environment
with obstacles, as shown in Fig. 8(a) where a proper set
of points (black spots) are interpolated by means of a
second degree spline. The choicep = 2 guarantees only the
continuity of the velocity, but on the other hand it reduces
the delay between the application of the inputpk to the
chain of two filters and the related output constituting the
trajectory. In this way it is possible to change the trajectory
pre-computed by simply changing the control points during
the realtime generation and tracking of the trajectory itself.As
a matter of fact, a B-spline trajectory has the property that
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Fig. 8. Geometric path in a 2D environment with obstacles defined
by means of a B-spline interpolating the given via-points (a)and local
modification obtained by changing the functionpk.

a local modification can be made quickly and easily without
recomputing the entire trajectory and leaves the remaining
trajectory unchanged. For instance, in Fig. 8(b) in order to
avoid the first obstacle, whose position is changed, some
control points are moved (the small spots in the figure are
the control pointspj and not the via-pointsqj).

VII. C ONCLUSIONS

In this paper a digital filter for trajectory planning is pro-
posed. This trajectory generator is based on B-spline func-
tions and therefore shares the same characteristics: multi-
point trajectories composed by properly joined polynomial
segments, degree of smoothness that can be freely selected,
efficient methods for interpolation/approximation of given
points, possibility of making local changes on the trajectory
without recomputing it. On the other hand, the proposed
structure composed by a chain of FIR filters allows a great
simplification of the procedures for B-spline evaluation and
on-line trajectory generation, making the proposed planner
suitable for a number of robotic applications.
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