B-Spline Based Filters for Multi-Point Trajectories Planning
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Abstract— In this paper, the relation between B-splines and and easily without recomputing the entire trajectory [7].
FIR (Finite Impulse Response) filters is demonstrated and Also in this case cubic B-splines are in general considered.
exploited to design a digital filter for trajectory planning, com- Splines of order higher than three, able to guarantee the

bining the very simple structure and computational efficiency L . . L
of FIR filters with the flexibility of splines. In particular, the  continuity of jerk and higher derivatives, have been prepos

trajectory generator consists of two main elements. The former but they are based on the classical polynomial formulation
is devoted to the solution of an optimization problem that, given [8]. Indeed, B-spline are very suitable to generate trajées

a set of points to be interpolated (or approximated), provides with continuous derivatives up to a generic ordgrsince
the control points defining the spline. The latter, a cascade the interpolation/approximation of a given set of pointesio

of moving average filters, gives the trajectory profile at each . .
sampling time on the basis of such points. The proposed method N0t depends on the particular order of the B-spline [1]. On

has been applied to several robotic and industrial applications, the other hand, despite the clear geometrical meaning of B-
and in this paper two case studies are reported as examples: an splines and their computational superiority with respec¢he

industrial robot performing a welding operation and a mobile  other (equivalent) spline formulations, their use in ratmt
robot moving in an environment with obstacles. With respect is still limited (e.g. in robotics textbooks only polynorhia

to these tasks, the main features of the trajectory generatoare I | idered 91 1101 111
shown: the possibility of planning trajectories with high degree splines are general considered, see [9], [10], [11] among

of smoothness (continuity of the derivatives), the possibility of Many others) probably because their evaluation is based on a
easily changing the duration of the trajectory (and therefore tre  recursive procedure rather than on a closed form expression

velocity, acceleration, jerk, etc. of the trajectory) maintaining ~ Aim of this paper is to provide a more simple formulation
tEe sameI georor|1etr|(|:1 path, the possibility of locally modifying ¢ B-spline based trajectories, combining the advantades o
the pre-planned path. these functions with the simplicity and the low computagibon

. INTRODUCTION complexity of FIR (Finite Impulse Response) filters.

Among many other applications, spline functions are ex- || B-spLINES ANDB-SPLINES BASIS FUNCTIONS
tensively used in planning trajectories for robots becafse

their flexibility. As a matter of fact, the tasks demanded to Since the basic theory of B-splines is well known, we only
robots (mobile robots, industrial robots, humanoid ropotdive & brief summary of the concepts and notations. More
etc.) often require position profiles with complex shaped€tails can be found e.g. in [1], [12], [13].

which are usually defined by means of a number of vig® B-Spline of degreep is a parametric curves
points. These via-points are then interpolated or approxitmin: tmaz] — R defined as linear combination Bspline
mated with smooth functions to by optimized in order td?@sis functions of degreep, B7(t):

comply with the constraints imposed by the specific robot n

application, i.e. kinematic constraints (such as limituesl s(t) = ijBf(t), tmin <t < tmag- (1)

of velocity, acceleration, jerk, etc.) or dynamic consitaion =0

the maximum torque available. In general, such interpatati
tasks are performed by means of cubic splines since th
assure the continuity of velocity and acceleration andquev
large oscillations of the trajectory that can result witigti
order polynomials, [1]. Therefore, cubic splines have be
used to minimize the total traveling time of robot trajeter
subject to constraints of velocity acceleration and jerk [

érhe vectorial coefficientp,, j = 0,..., m, called control

p%i nts, determine the shape of the curve and are computed by
imposing approximation/interpolation conditions on aegiv
e%et of data points. Let = {to,...,t,n—1} be a vector of
real numbers (callednots), with ¢; < ¢;;4. The j-th B-
2spline basis function of degreep is defined, in a recursive

or to globally minimize some quantities, such as accelenati manner, as
[3] or jerk [4]. Some authors prefer the adoption of splines p,,, = t—1; -1 Litpt1 —t  p1
. ! . ()= ——-B] () + ————B/ () 2
in the so-called B-form, i.e. B-splines, because they are tivp — 1t Litpt1 — tjg1
much simpler from the computational point of view [5], .
P ' with
[6] and because a local modification can be made quickly 1 £ <t<t
B=q o
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case, the basis functions for a given degpesre consistent expression becomes
under shifts:

Su(s)= ZL‘ {p;B°} e 7" - M(s)- M(s)-...- M(s)
7=0

B§)+1(t):B§?(t—T)7 7j=0,...,m—2.
Therefore, for uniform B-splines it is possible to exprdss t —r zn:p‘BO(t iy S Ms) - ()
] e .

(j+1)-th basis functionBY in terms of the first basis function

BY, hereafter simply denoted hi?: =0

whereM (s) = £ { £ B°(t)} = L1=¢"" performs the mean

S

BY(t) = BP(t — jT), j=0,....m—1 of the input function over an interval of duratidh. This
] ) expression suggests that a uniform B-spline can be evaluate
and the B-spline can be rewritten as by feeding the cascade of filters M (s) with a piecewise
n constant function
su(t) =S p.BP(t—iT),  0<t<(m-1T. @3) n _
]zz:o ! p(t)=> p;B(t - jT)
7=0

Mqreover,_for uniform B-splings, thg definition (2) of thein4t in the generic intervall’ < ¢ < (j + 1)T assumes the
basis function5”(t) of degreep is equivalent to constant valuep;. Note that, in multidimensional B-splines,
1 the control pointg, are multi-dimensional and the function

Br(t) = TBP_I « BY p(t) is multidimensional as well. In this case, it is necessary

1 = 1, o o 4) to. consider the different compon.ents and filter each of them

= FB 5B .k m BB with a separate chain of mean filters.

p times Il1. DISCRETEB-SPLINES

A unified transformation to convert analytic B-splines

wherex denotes the convolution product and . . . . . .
* P in the discrete domain does not exist. In particular, with

1, if 0<t<T reference to cardinal B-splines (uniform B-splines defined
BY(t) = { o over the integers) which are mainly used for signal analysis
0, otherwise. interpolation and image processing, it is possible to find

. : in the literature different techniques to obtains disciBte
By Laplace transforming the general expression of the unj-

e e . splines. In general, they are defined by directly sampling
form B-spline (3) and substituting (4) one obtains analytic B-splines with Z-transform, bilinear transforetc.

_ [14], [15], [16], [17], [18]. For this purpose, the first step
} e 7T consists in discretizing the basis functions. By explgitihe

= 1 1 1
Su(s) = E L{ijO*TBO*BO*...*TBO
relationship

° T
7=0
Exploiting the linearity of the above expression and the fac Br(t) = in‘l(t) « BO(t)
that %BO is not a function of the index, the B-spline T

= ;/O; B~ Yt — 1) B(r)dr

: R P the value of the B-spline basis function at the discrete time
| 3 instantst = k7T, (whereT is the sampling time) results

BO(1)

S T beeee- T

| | | 1
| | | ~ = > BPY(KT, — nT,) B®(nT.)T,

‘ ‘
b 5 5 ar n=-00

: : L[
21 3T at Bi:] = / Bp_l(kTs — 7-) BO(T>dT

BY(1)

- T 1SS ot opo L oop1 . o

SN = N 2 B Bl= BB

i f " where B} = B?(kT,), N = T/T, is the number of samples
| in each knot span, andis the discrete convolution product.

Finally, the discrete basis functioB), of degreep, can be

written as

B (1)

1 1 1
BQ:NBQ*NBQ*...*NB,S*BQ (5)

Fig. 1. B-spline basis functionB? (¢) obtained for different values of the
degreep.

p times



By

By | %llf_zzj“f L %lf_z‘j L %117_21“1’ | B and then, because of the linearity of (8) and the fact that
+ B is not a function of the indey,
p blocks n
0 —JN
Fig. 2. System composed hyfilters for the computation of the discrete S(z) = Z Z {ijk} 20 M(2) - M(2) - ... M(2)
B-spline basis function’B,’C’ of degreep. j=0
= ZY pBY n g M(z) M(z)-...- M(2).
with =0
0o 1, if 0<k<N-1 Therefore, the discrete uniform B-spline of degrgeis
By = 0, otherwise. dgfined as the .output of a chain pfmean filters feeded
with the piecewise constant function
Note that (5) is only an approximation of the analytic B- n
spline basis function and does not have the same values at P = ijBg_jN (9)
discrete points. Nevertheless, it is possible to prove tiat =0

staircase curve obtained in this way tend to the B—splinisbasshown in Fig. 3(a)
function in the sense of root mean square (RMSYagoes ' '

to zero [17]. The performed approximation leads to a very I\V. CHOICE OF THECONTROL POINTS
simple definition of discrete basis functions and discrete B
splines. As a matter of fact, the discrete function (5) can
seen as a cascade pimean filters (moving average filters)
whose transfer functions are

The proposed trajectory planner, composed by a generator
bgf sequences of constant valups and by a cascade of
'mean filters, enjoys the same properties of analytic uniform
B-splines. Therefore, in order to find the control points
11—2zN which define the piecewise constant functipp, one can

M(z) = N 1—1 (6) exploit classical techniques derived by B-spline inteapol

_ 1 1 9 —(N-1) tion/approximation methods.

- N (1 tTE st ) For example, if one considers the interpolation of a sétdf
with the input BY, see Fig. 2. Like analytic splines, discretegg:]n(;ii{oaos’ 91,42 411, @i} itis necessary to impose the
uniform B-splines are defined as a linear combination of the _ L

s(t;) = q;, i=0,...,1 (10)

discrete basis function properly time-shifted:
n wheret; is the time instant at which the splingt) crosses
- p.BY . @) the given pointg; . _ _ .
g jZ::O 3Tk N The first step consists in selecting the degreeof the
) ) spline according to the desired degree of smoothnesstltric
By applying the Z-transform to (7) one obtains related top is the choice of time instants:

1 1 A o if pis odd, thet; are assumed coincident with the knots,
S(z):ZZ{pjﬁBg*ﬁBg*...*NB;S*BQ}AZ*]N (8) t; =T
=0 « if p is even, the time instants should be selected in
the midpoint of each knot spat, = 27",

e Once the interpolation time instantshave been chosen it is
R N T possible to make the system of equations (10) explicit with
Hl o the substitution of the values of basis functiong;ain the

1 e AT spline definition (1). For uniform B-splines it is possibte t
RERD B . @ pines it s p

A £ S

Py
=
=
—
[

‘ ‘ find a closed form expression which provides the value of
oo the basis functiomB? at a generic time instarit[16]:

(@) 12 p+1\ [t P
o E ) (-1
. q q q X s # p' kz:o ’ ! "
& ]HHTHHTHHTM Th Tﬂ “M where ! denote the factorial function(y) = Wib)' and
ar 3T a4t F‘ [er 7T egMHe (x)% is the truncated power functioffa()’, = a? if = > 0,
% (x)%. = 0 otherwise). The values d8? for p odd andp even,
as computed at points; = i7" andt; = 21T respectively, are
(b) reported in Tab. |. Note that, because of the choice of the

interpolation time instants, the values BP do not depend
on T, but only on the index and on the degreg.
In order to obtain a system of equations well conditioned

Fig. 3. Samples of the piecewise constant functign(a) generating the
spline profilesy, that interpolates the given poingg; (b).



from a mathematical point of view it is necessary to consideéor : = 1,...,l — 1 and the piecewise constant function (9)

symmetrical B-spliness(t), i.e. uniform B-splines whose can be finally built.

basis functiong?(t) is symmetric with respect the origin.

The functiong?(t) can be deduced froB?(¢) with a simple i . .
The adoption of the B-splines of degree = 3, i.e.

i i 7 — pp ptl
time Sh'f.t' () .B (t+#5°T), and as a CONSEqUeNce ., hic B-splines, guarantees the continuity of velocity and
symmetrical B-splines are related to standard uniform Bjcceleration. By substituting the values of Tab. I, the ggine

A. Cubic B-splines

splines by equation (11) becomes
. so(iT) = 2p,  + 2p Y p =g, i=1,...1—1 (12)
() = D p; At iT) )T Pt T gPi T Pt =i T
=0 with the additional constraintp, = g, and p, = gq;.
1 . 1 After simple algebraic manipulations, (12) can be written
- ijBP(t + BT = jT) = su(t + 22 T), in a matriE)< forn? as g )
j=0
7 _ _ _ 4010 0[ P17 [ 64— a0 ]
that is, given the control points, uniform B-splines areadqu |1 4 1 0 0 D, 69,
to symmetrical B-splines delayed B 7. Obviously, the 01410 011 s 6q3
theory of Sec. Il and Sec. Ill could be based on symmetrical | : : L= : (13)
B-splines but this would imply the presence of a temporal | o 0 1410||p,_4 6q, 5
anticipation leading to noncausal filters for the evaluati® 0 01 4 1||p_s 6q, o
B-splines. Lo - 01 4flp ] L6q_,—gq
For each point to be interpolated, with the only exception obue to the tridiagonal structure of the system matrix, the
the first and last points, the equation (10) becomes solution of (13) can be easily found. More generally, by

n adopting B-splines of generic degree the systems to be
sq(t;) = ijB”(ti —jT+22T) = q, (11) solved for obtaining the control points will be charactedz.
=0 by banded matrices, whose inversion can be carried out in a

where e Unknowns are the control pop) € Interpo- Figure 4 shows the cubic B-spline trajectory obtained by
lation of the first and last points, with zero velocity and

. . ) - 7 . interpolating the points
acceleration, is achieved by exploiting the charactesstif P g P

the dynamic system of Fig. 2 used to generate the spline{q;} = {5,12,3,45,23,4, 3,5, -3,10,10, 16, 19, 4,23}
Since all the filters have unitary static gain, the outputhef t
filters cascade will reach and maintain the desired valye
or q; iff the same value is applied to the inppd’ seconds
before. In other words, in order to smoothly start fram
and end tag,, the first/lastp control points must be equal to
qo/q,- Thel — 1 internal control points are then computed
by solving the system of equations obtained by stacking (1t

with period T = 1s. For the sake of simplicity a one-
dimensional case has been taken into account but the same
considerations are valid in the multi-dimensional case as
shown in the later Sec. VI. Note that the first and the last
tracts are of lengtl27 (and in the case of B-splines of
eneric degreg of length %IT). This is unavoidable but, on

e other hand it allows the trajectory to smoothly stad/en
i.e. with all the derivatives up to the ordgr 1 that are null

0O T 2T 3T 4T 5T 6T 7T 8T
p = 110 1 0 80
_ 1 4 1
p=310 3§ 6 6 0
_ 1 26 66 26 1
pP=510 135 136 10 120 120
—7l0 120 1191 2416 1191 120 _1_
p= 5040 5040 5040 5040 5040 5040 5040
(a)
1 1 3 5 7 9 11
;T 3T 5T 3T 5T 3T T
_ 1 6 1
=2] g 8 s 0
_4] 1 16 280 76 1
p=4| 35 384 384 381 384 0
_ 6 1 722 10543 23548 10543 722 1
= 16030 46080 46080 46080 46080 46080 46080
(b)
=200
0 2 4 _ﬁmelfs) 12 14 16 18
TABLE |
B-SPLINE BASIS FUNCTIONBP(t) FORp ODD AT POINTSt; = iT (a), Fig. 4. One-dimensional cubic B-spling, interpolating a set of given

points: profiles of position (superimposed to the piecewsestant function

AND FORp EVEN AT POINTSt; = 22517 (b). ) &
py.). velocity and acceleration.
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Fig. 5. Overall structure of the filter for B-spline trajed&s planning.

at the start- and end- points. In the case of the cubic B-splirapplication to the filters cascade input of the control point

this means that initial and final velocities and acceleratio
are zero. By comparing the profiles of the functipp and

g, for at leastp intervals of duratioril.
In robotic applications, the pointg; are generally defined

of the splines,, it is clear that the latter roughly reproducesin a d-dimensional spaced( = 2, 3). In this case, the

the shape of the former with a “delay” 612@1T seconds, see

trajectory generator must be simply replicatédimes, one

Fig. 4. Moreover, when the last control point is applied, théor each component, and the desired B-spline is obtained if
output of the trajectory planner reaches such a value aftdre related sequences are synchronized.

pT' seconds.

V. STRUCTURE OF THEFILTER FOR TRAJECTORY
PLANNING

VI.
Two case studies are now reported as examples of the flex-

NUMERICAL EXAMPLES

In Fig. 5 the structure of the trajectory generator ispjlity and simplicity offered by this technique for trajecy

illustrated. It is composed by two main elements:

planning.

1) an algorithm (described previously) that transforms the

desired pointsy; in the set of control pointg;;
2) a cascade gbp moving average filters, wheng is the

A. 3D welding
Consider the case of an industrial robot manipulator weld-

desired degree of the B-spline (the resulting trajectoryhg the two cylinders in Fig. 6(a). The path that the robot

will be CP~1).

tool must track is reported in Fig. 6(b). Many CAD/CAM

Between them, the “Sequencer” produces the piecewisgstems directly provide the control poins of the B-spline

constant functiorp,, shown in Fig. 3(a) arranging in a line
the control pointgp;, each one for a duration df seconds,

to be followed. Differently, it is possible to “sample” the
analytic curve if given or, more generally, consider a derta

where T is the time distance between consecutive pointsiumber of points distributed along the geometric path to be
While the algorithm for the control points computation isfollowed. In the case of uniform B-splines, the distributio
performed offline, the system composed by the sequencefr the path points is crucial for imposing a desired feed-

and by the filters runs on-line with a sampling tirfig that

rate of the tool. As a matter of fact, it is not possible to

in general is the same of the digital controller of the oueraffreely chose the duration of each spline segment (b&ing

robotic system. Sincé& is fixed, the numbefV of samples
considered in each FIR filter only depends @i being
N = rounc(%). Therefore, by changingV it is possible to
directly modify 7.

In order to smoothly starts from the first desired pajgt

equal for all the tracts), but on the contrary it is necessary
to select the distance between poigtswith the purpose of
“shaping” the velocity, the acceleration, etc. of the tcéjey.

For instance, in a welding application the velocity shoutd b
constant along the entire path. For this reason, paiptsave

it is necessary that internal states of all the FIR filters arbeen selected at a distance which is approximatively cohsta

set togq,, while a smooth end ad; is guaranteed by the

N

(b)

Fig. 6. Welding of two cylindrical objects (a) and relatedbgeetric path
(b).

(the mean value of the distance between consecutive points
is 0 = 0.0944). From these via-points the control points

have been obtained as reported in Sec. IV. In order to prevent
oscillation and reduce tracking errors a quintic B-splires h
been considered(= 5). In this way, velocity, acceleration,
jerk and even snap (i.e. the derivative of jerk) are contirslo

as shown in Fig. 7. The trajectory is evaluated on-line by a
chain of five FIR filters with a sampling tim&, = 0.001s.
Each filter calculates the average of the laét= 1000
samples, therefore the time distance between the pgints

T = NT, = 1s. As a consequence the speed, which is almost
constant, isjs;| ~ 2 = 0.094, see Fig. 7(a). By changing

N it is possible to modify the duration of each tract and
of the overall trajectory. Accordingly the derivatives gf
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Fig. 7. Profiles of the norm of velocity, acceleration andjezlated to

the B-splines;. defining the curve of Fig. 6(b) for different values &f
T = 1s (a) andT’ = 0.2s (b).

(velocity, acceleration, jerk, etc.) are modified as foow

a local modification can be made quickly and easily without
recomputing the entire trajectory and leaves the remaining
trajectory unchanged. For instance, in Fig. 8(b) in order to
avoid the first obstacle, whose position is changed, some
control points are moved (the small spots in the figure are
the control pointgp; and not the via-pointg ;).

VIl. CONCLUSIONS

In this paper a digital filter for trajectory planning is pro-
posed. This trajectory generator is based on B-spline func-
tions and therefore shares the same characteristics:-multi
point trajectories composed by properly joined polynomial
segments, degree of smoothness that can be freely selected,
efficient methods for interpolation/approximation of give
points, possibility of making local changes on the trajecto
without recomputing it. On the other hand, the proposed
structure composed by a chain of FIR filters allows a great
simplification of the procedures for B-spline evaluatiord an
on-line trajectory generation, making the proposed planne

i ()

/(2)_ 1
S, = QS

where o = Nﬁ being N’ the new number of samples [1]
considered in each FIR filter. In Fig. 7(b) the velocity,
acceleration and jerk of the B-spline computed with= o
200 (thusT = 0.2s) is shown. Note that the velocity is scaled
by 5 times, the acceleration by 25, the jerk by 125, while the
shape of these profiles remains unchanged. Obviously al
the geometric path defined by the trajectory generator does
not change. ”

B. Mobile robots

Another interesting application of the proposed planner[5]
concerns the navigation of mobile robots in an environment
with obstacles, as shown in Fig. 8(a) where a proper self]
of points (black spots) are interpolated by means of a
second degree spline. The chojee- 2 guarantees only the 7
continuity of the velocity, but on the other hand it reduces
the delay between the application of the ingut to the
chain of two filters and the related output constituting the
trajectory. In this way it is possible to change the trajecto
pre-computed by simply changing the control points during[9
the realtime generation and tracking of the trajectoryfitde (1
a matter of fact, a B-spline trajectory has the property thé[li

(8]

[12]

[13]
[14]

[15]

[16]

[17]

Fig. 8.  Geometric path in a 2D environment with obstacles défine
by means of a B-spline interpolating the given via-points gajl local
modification obtained by changing the functipp.

(18]

] B. Cao, G.I. Dodds, and G.W. Irwin.

suitable for a number of robotic applications.
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